
Technical Memo

To: SHRP2 - C10 Tri-Agency Project Implementation Files

From: Stefan Coe

Date: September 18th, 2015

Subject: Transit Network Design Specification v0.2 - Working Draft

Introduction:
Network Design Considerations
Existing Fast-Trips and GTFS Network Specification

File Format
Required Files
Current Fast-Trips Specification
GTFS Additional Relevant Files
Issues with current specification

Proposed Fast-Trips Transit Network Specification
Required Files and Format
Transit Service Provision
Fare Specification

Example: Single leg, no transfer, flat-fare
Example: Two or more legs, transfer
Example: Multiple Transfers
Example: System-wide Fare, one transfer

1st leg:
2nd leg:

Example: Inter-Agency Fare, zonal fee structure
1st leg:
2nd leg:

Example: Zone-Based Fares
Example: OD-Based Fares

Transit Access and Transfer Specification
Appendix A - Transit Network Data Standard

File Format
Required Files
Transit Service Provision

trips.txt
trips_ft.txt
routes.txt
routes_ft.txt
stops.txt

stops_ft.txt
stop_times.txt
stop_times_ft.txt
shapes.txt - Optional
vehicles.txt

Fare Definition
fare_attributes.txt - Implementation Specific Requirements
fare_attributes_ft.txt - Implementation Specific Requirements
fare_rules.txt - Implementation Specific Requirements
fare_rules_ft.txt - Implementation Specific Requirements
fare_transfer_rules.txt - Implementation Specific Requirements

Access Files
walk_access.txt - required by Fast-Trips, not a GTFS format
transfers.txt - required by Fast-Trips, Optional for GTFS
transfers_ft.txt - Implementation Specific Requirements
drive_access.txt - Implementation Specific Requirements
pnr.txt - Implementation Specific Requirements
knr.txt - Implementation Specific Requirements

Other Required Files

Introduction:
The purpose of this document is to lay out a transit network design specification for
the SHRP2 Fast-Trips implementation research project. This document examines and
evaluates existing transit network specifications including previous versions of
Fast-Trips and the General Transit Feed Specification (GTFS), identifies gaps and
improvements, and proposes a final specification.

Network Design Considerations
The following considerations were taken into account when evaluating existing
specifications and proposing a new one. They were developed based on feedback from
various members of our team.

1. In order to make use of existing libraries and visualization capabilities, the
format should use existing and mainstream conventions and standards when
possible, which in this case means GTFS. Where GTFS has not yet incorporated
a standard, the GTFS proposals should be evaluated to see if they could be used
rather than developing something new.

2. In order to remain flexible to a variety of applications, the format should
accommodate a variety of variables that may be used in route finding utility
functions and rules, including on access links.

3. In order to increase the likelihood that errors are caught, the format should be
legible and human readable without special tools.

Existing Fast-Trips and GTFS Network Specification
Fast-Trips currently uses a GTFS-derivative, schedule-based transit network. Transit
vehicle trips are represented by a sequence of bus stops. Arrival and departure times
for each stop for each trip are explicitly specified, with the travel time and dwell time
being endogenous. The arrival and departure time between stops and can either be
taken directly from the published GTFS schedule, or derived from a vehicle assignment
model (i.e. DTA or SUE).

Transit riders are assigned a feasible itinerary from the schedule that takes them from
a stop that is accessible to their origin to one that that is accessible to their destination.
Transit demand is supplied to the network via TAZ centroids, which are connected to
the transit network using access links. Some versions of Fast-Trips allow for park and
ride (PNR) lots to be chosen within Fast-Trips, but the input to Fast-Trips are the origin
and destination locations (i.e. traffic analysis zones).

The primary differences between Fast-Trips and GTFS specifications are the file
format, the required files, and the variable definitions within the files. The file format
and required files are outlined in sub-sections below. The detailed differences in
variables within each file can be found in the sub-section discussing Fast-Trips Current
Specification. The current Fast-Trips specification for the transit network is discussed
in three parts: access links, transfer links, and transit service. Next, there is a section
describing GTFS files related to fares, which are not included in the current Fast-Trips
specification but will be needed for this project. The final sub-section discusses issues
and drawbacks of the current Fast-Trips specification.

In addition to files that define the transit network, Fast-Trips has input files to describe
zonal centroid locations, demand, path building parameters, and run-time parameters.
These are outlined in detail in the Fast-Trips documentation and are not discussed here
because they will be addressed in future design decisions as a part of Task 3 - Demand
and Task 4 - Transit Rider behavior.

File Format
GTFS files are comma-delimited, while Fast-Trips reads in tab-delimited. In both cases,
the first line of each file must contain the field names, which are case-sensitive. Field
values may not contain tabs, carriage returns or new lines.

Required Files

File Filename (FastTrips / GTFS) GTFS FastTrips

https://developers.google.com/transit/gtfs/reference
https://developers.google.com/transit/gtfs/reference
https://github.com/akhani/FAST-TrIPs/blob/master/Documents/FAST-TrIPs%20User%27s%20Manual.pdf

Access Links GTFS: NA
FT: ft_input_accessLinks.dat

NA Required

Transfer Links GTFS: transfers.txt
FT: ft_input_transfers.dat

Optional Required

Trips GTFS: trips.txt
FT: ft_input_trips.dat

Required Required

Routes GTFS: routes.txt
FT: ft_input_routes.dat

Required Required

Stops GTFS: stops.txt
FT: ft_input_stops.dat

Required Required

Stop Times GTFS: stop_times.txt
FT: ft_input_stopTimes.dat

Required Required

Shapes GTFS: shapes.txt
FT: ft_input_shapes.dat

Optional Optional

Agency GTFS: agency.txt
FT: NA

Required NA

Calendar GTFS: calendar.txt
FT: NA

Required NA

Calendar Dates
(exceptions)

GTFS: calendar_dates.txt
FT: NA

Optional NA

Fare Attributes GTFS: fare_attributes.txt
FT: NA

Optional NA

Fare Rules GTFS: fare_rules.txt
FT: NA

Optional NA

Frequencies GTFS: frequencies.txt
FT: NA

Optional NA

Feed publication info GTFS: feed_info.txt
FT: NA

Optional NA

Current Fast-Trips Specification
The core Fast-Trips model uses the following input components: access links, transfer
links, and transit service but does not include information about fares. Many of the
variables names are similar, but not exact to the GTFS specification.

Note that in all tables below, the “requirements” column is encoded as follows:

● + : Required
● O: Optional

● NA: Not Applicable

Access links represent pedestrian links from a centroid to each accessible transit stop.
They can be created using an existing Fast-Trips pre-processing tool, or a user can use
more sophisticated techniques to create access links and supply this file themselves.

GTFS: Not applicable
Fast-Trips: ft_input_accessLinks.dat
Contains a record for each feasible stop <--> zone pair

Field
Name Required Details

TAZ GTFS: NA
FT: +

Zone ID

stop GTFS: NA
FT: +

Stop ID

dist GTFS: NA
FT: +

Walking distance in miles between TAZ and stop

time GTFS: NA
FT: +

Walking time in minutes between TAZ and stop

Transfer links are links between stops that are traversed on foot. They are created for
each stop to all other stops that are within a certain distance of said stop. These are the
potential stops that are considered accessible during a transfer from an individual
stop.

GTFS: transfers.txt
Fast-Trips: ft_input_transfers.dat
Contains a record for each feasible stop <--> stop pair

Field Name Required Details

GTFS: from_stop_id
FT: fromStop

GTFS: +
FT: +

From stop ID

GTFS: to_stop_id
FT: toStop

GTFS: +
FT: +

To stop ID

GTFS: NA
FT: dist

GTFS: NA
FT: +

Walking distance in miles between stops

GTFS: NA GTFS: NA Walking time in minutes between stops

FT: time FT: +

GTFS: transfer_type
FT: NA

GTFS: +
FT: NA

Specifies the type of connection:
0 / Empty - a recommended transfer point
1 - timed transfer between two routes
2 - requires a minimum amount of time, specified
by min_transfer_time
3 - transfers not possible between routes

GTFS:
min_transfer_time
FT: NA

GTFS: +
FT: NA

When a connection between routes requires an
amount of time between arrival and departure
(transfer_type=2), this field defines the amount of
time that must be available for a typical rider - in
seconds.

Transit Service is specified by modifying five GTFS files to a format readable by
Fast-Trips. There are files that represent transit vehicle trips, routes, stops, stop times,
and route shapes.

GTFS: trips.txt
Fast-Trips: ft_input_trips.dat
Contains a record for every transit vehicle trip (i.e. the Muni 14 Local Outbound that
leaves at 8:02 AM)

Field Name Required Details

GTFS: trip_id
FT: tripID

GTFS: +
FT: +

ID that uniquely identifies a vehicle trip

GTFS: route_id
FT: routeId

GTFS: +
FT: +

ID that uniquely identifies a route

GTFS: service_id
FT: NA

GTFS: +
FT: NA

ID that uniquely identifies set of dates when service
is available from calendar or calendar dates files.

GTFS: trip_headsign
FT: NA

GTFS: O
FT: NA

Text that appears on the vehicle headsign to identify
destination to passengers.

GTFS: trip_short_name
FT: NA

GTFS: O
FT: NA

Text that appears in schedules and sign boards.

GTFS: NA
FT: type

GTFS: NA
FT: +

Service type:
0 - Tram, streetcar, light rail
1 - Subway, metro
2 - Rail
3 - Bus

4 - Ferry
5 - Cable car
6 - Gondola

GTFS: block_id
FT: NA

GTFS: O
FT: NA

Two or more sequential trips made using same
vehicle where passenger can transfer by staying on
same vehicle. block_id must be referenced by two
or more trips in trips.txt.

GTFS: shape_id
FT: shapeId

GTFS: O
FT: O

Defines shape for the trip from shapes.txt file.

GTFS:
wheelchair_accessible
FT: NA

GTFS: O
FT: NA

0 - no accessibility info
1 - vehicle on this trip can accommodate at least
one rider in a wheelchair
2 - no riders in wheelchairs can be accommodated
on this trip

GTFS: bikes_allowed
FT: NA

GTFS: O
FT: NA

0 - no bike accessibility info
1 - vehicle on this trip can accommodate at least
one bicycle
2 - no bicycles can be accommodated on this trip

GTFS: NA
FT: startTime

GTFS: NA
FT: +

Start time of the trip

GTFS: NA
FT: capacity

GTFS: NA
FT: +

Vehicle capacity of the trip (default is 60)

GTFS: direction_id
FT: directionId

GTFS: O
FT: +

ID that contains a binary value that indicates the
direction of the trip:
0 - travel in one direction
1 - travel in opposite direction

GTFS: routes.txt
Fast-Trips: ft_input_routes.dat
Contains a record for every transit route (i.e. the Muni - 14 Local)

Field Name Required Details

GTFS: route_id
FT: routeId

GTFS: +
FT: +

ID that uniquely identifies a route

GTFS: agency_id
FT: NA

GTFS: O
FT: NA

ID that identifies the agency as specified in agency.txt

GTFS:
route_short_name
FT:
routeShortName

GTFS: +
FT: +

Short name of the route

GTFS:
route_long_name
FT:
routeLongName

GTFS: +
FT: +

Full name of the route

GTFS: route_desc
FT: NA

GTFS: O
FT: NA

Description of route.

GTFS: route_type
FT: routeType

GTFS: +
FT: +

Service type:
0 - Tram, streetcar, light rail
1 - Subway, metro
2 - Rail
3 - Bus
4 - Ferry
5 - Cable car
6 - Gondola
7 - Funicular

GTFS: route_url
FT: NA

GTFS: O
FT: NA

Webpage for that route

GTFS: route_color
FT: NA

GTFS: O
FT: NA

Display color for route in six-digit hexadecimal

GTFS:
route_text_color
FT: NA

GTFS: O
FT: NA

Color of text to be drawn on top of route color,
specified in six-digit hexadecimal

GTFS: stops.txt
Fast-Trips: ft_input_stops.dat
Contains a record for every transit stop or station (i.e. Embarcadero Station)

Field Name Required Details

GTFS: stop_id
FT: stopID

GTFS: +
FT: +

ID that uniquely identifies a stop or station

GTFS: stop_code
FT: NA

GTFS: O
FT: NA

Short text or a number that identifies the stop for
passengers (i.e. EMB)

GTFS: stop_name
FT: stopName

GTFS: +
FT: +

Name of a stop or station

GTFS: stop_desc
FT: stopDescription

GTFS: O
FT: +

Description of a stop or station

GTFS: stop_lat
FT: Latitude

GTFS: +
FT: +

Latitude of stop or station in WGS 84

GTFS: stop_lon
FT: Longitude

GTFS: +
FT: +

Longitude of stop or station in WGS 84

GTFS: NA
FT: capacity

GTFS: NA
FT: +

Capacity of stop or station (use a large number if
unknown)

GTFS: zone_id
FT: NA

GTFS: O
FT: NA

Defines a fare zone for the stop ID. Required if you want
to provide fare information in fare_rules.txt that uses
zones.

GTFS: location_type
FT: NA

GTFS: O
FT: NA

Identifies whether this stop is a stop or station. If
nothing is specified or is blank, it is assumed it is a stop.
Stations can have different properties from stops.
0 or blank - stop
1 - station (contains one or more stops)

GTFS: parent_station
FT: NA

GTFS: O
FT: NA

For stops inside stations, identifies station associated
with the stop. Stops.txt must also contain a row where
this stop id is assigned a location type 1.

GTFS: stop_timezone
FT: NA

GTFS: O
FT: NA

Contains timezone where stop or station is located. If
omitted, stop assumed to be located in timezone in
agency.txt.

GTFS:
wheelchair_boarding
FT: NA

GTFS: O
FT: NA

Identifies whether wheelchair boardings are possible
from the specified stop or station.
0 - no information
1 - some vehicles can be boarded by wheelchair
2 - wheelchair boarding not possible

If a stop is part of a station:
0 - will inherit from parent station, if specified.
1 - there is an accessible path from outside station to
stop
2 - no accessible path to specific stop

GTFS: stop_times.txt
Fast-Trips: ft_input_stopTimes.dat
Contains a record for every scheduled stop within a trip and route (i.e. the time when
the Muni 14 Local Outbound that left at 8:02 gets to 24th St. and Mission St)

Field Name Required Details

GTFS: trip_id
FT: tripId

GTFS: +
FT: +

ID that uniquely identifies trip

GTFS: arrival_time
FT: arrivalTime

GTFS: +
FT: +

Arrival time at a specific stop for a specific trip on a
route in HHMMSS format measured from midnight. For
trips that span multiple dates, the time should be
entered as a value greater than 2400000

GTFS:
departure_time
FT:
departureTime

GTFS: O
FT: +

Departure time at a specific stop for a specific trip on a
route in HHMMSS format measured from midnight. For
trips that span multiple dates, the time should be
entered as a value greater than 2400000

GTFS: stop_id
FT: stopId

GTFS: +
FT: +

ID that uniquely identifies a stop

GTFS:
stop_sequence
FT: sequence

GTFS: +
FT: +

Sequence number on a specific stop within a trip. The
first stop sequence is 1 and subsequent stops in the trip
are sequentially numbered.

GTFS:
stop_headsign
FT: NA

GTFS: O
FT: NA

Text that appears on sign that identifies the trips
destination to passengers. use this field to override
default headsign when it changes at stops.

GTFS: pickup_type
FT: NA

GTFS: O
FT: NA

0/default - regular pickup
1 - no pickup available
2 - must phone agency
3 - must coordinate with driver

GTFS:
drop_off_type
FT: NA

GTFS: O
FT: NA

0/default - regular drop off
1 - no drop off available
2 - must phone agency
3 - must coordinate with driver

GTFS:
shape_dist_travele
d
FT: NA

GTFS: O
FT: NA

Positions a stop as a distance from the first shape point
in units that are used in this field in shapes.txt

GTFS: timepoint
FT: NA

GTFS: O
FT: NA

Indicates if specified arrival and departure times for a
stop are strictly adhered to by the transit vehicle or if
they are approximate and/or interpolated.
empty - times considered exact
0 - times considered approximate
1 - times considered exact

GTFS: shapes.txt
Fast-Trips: ft_input_shapes.dat

Contains a record for shape points in a single shape that collectively describes the path
transit vehicles take on their trips.

Field Name Required Details

GTFS:
shape_id
FT:
shapeId

GTFS: +
FT: +

ID that uniquely identifies a shape

GTFS:
shape_pt_lat
FT:
latitude

GTFS: +
FT: +

Latitude of a shape point (WGS 84)

GTFS:
shape_pt_lo
ng
FT:
longitude

GTFS: +
FT: +

longitude of a shape point (WGS 84)

GTFS:
shape_pt_se
quence
FT:
sequence

GTFS: +
FT: +

Associates the latitude and longitude of a shape point sequence
order along a shape

GTFS:
shape_dist_t
raveled
FT:
distTraveled

GTFS: O
FT: +

distance from the first shape point as a real distance in feet

GTFS Additional Relevant Files
Several files within the GTFS specification contain information that can be used to
augment Fast-Trips, the most notable of which are the files used to describe fares.

Currently there are two GTFS files that define fares: Fare Attributes and Fare Rules,
each described below.

GTFS: fare_attributes.txt
Fast-Trips: Not Applicable
Field Name Required Details

fare_id Required Contains an ID that uniquely identifies the fare class. The
fare_id is dataset unique.

price Required Fare price in the unit specified by currency_type

currency_
type

Required Defines the currency used to pay the fare in ISO 4217
alphabetical currency codes

payment_m
ethod

Required When the fare must be paid:
0 - on board
1 - before boarding

transfers Required Number of transfers permitted on this fare:
0 - none
1 - one
2 - two
(empty) - unlimited

transfer_
duration

Optional Length of time in seconds before transfer expires. Omit or leave
empty if they do not.

GTFS: fare_rules.txt
Fast-Trips: Not Applicable
Specifies how fares in the fare attributes file apply to an itinerary by O/D station,
zones, or route.

Field Name Required Details

fare_id Required Unique identifier to fare class in fare attributes file

route_id Optional Associates a fare ID with a route ID from the routes file. If
multiple route have the same attributes, create a row for each
route.

origin_id Optional Origin fare zone ID, referenced from the stops file. If several
origin IDs have the same fare attributes, create a row for each
origin ID.

destination
_id

Optional Destination fare zone ID, referenced from the stops file. If
several destination IDs have the same fare attributes, create a
row for each destination ID.

contains_id Optional Associates a fare iD with a zone ID from the stops file and is
associated with itineraries that pass through the contains_id
zone.

Issues with current specification
There are a variety of issues with the current Fast-Trips specification that we would
like to address with the revision:

http://en.wikipedia.org/wiki/ISO_4217.
http://en.wikipedia.org/wiki/ISO_4217.

(1) there is an unnecessary deviation from GTFS file and variables names and GTFS file
formats. This can be remedied by adapting Fast-Trips to read in GTFS files directly and
then create additional files with additional information and variables as needed.

(2) where possible and where it does not conflict with the GTFS specification, strings
rather than integer codes should be used in order to facilitate legibility and increase
the likelihood that errors are caught.

(3) there are additional variables that would be required in order to use them in route
choice path-finding specifications. These include station attributes (i.e. bike and car
parking), vehicle attributes (i.e. seated and standing capacity), fare rules, reliability,
and additional network mode names.

(4) general functionality related to park and ride lots needs to be addressed. GTFS
currently ignores issues of access and Fast-Trips’ solution should have the flavor of
GTFS.

(5) fare variables are currently ignored in fast trips, but need to be included.

Proposed Fast-Trips Transit Network Specification
This section considers the current Fast-Trips format and the overall objectives for a
Fast-Trips transit network specification and makes specific recommendations for
changes. Recommendations are discussed for the overall required files and format,
transit service, fares, and access and non-transit links.

Required Files and Format
The proposed Fast-Trips network specification addresses one of the issues with the
existing network specification by adopting plain GTFS as the primary format and
supplementing the information available in GTFS with additional files. This will allow
the existing multitude of GTFS file readers already available to read the network
information without breaking. The two files (i.e. routes.txt and routes_ft.txt)
can be joined together by a unique identifier within Fast-Trips. Accordingly, variables
that were previously optional to Fast-Trips but mandatory in GTFS will become
mandatory in Fast-Trips. Since there are both mandatory and optional variables, the
Fast-Trips software should check for the presence of all the mandatory variables and
read in the optional variables as kwargs or similar. All Unique IDs should be cast to
string when appropriate (e.g. in a Pandas data frame) so that we can merge multiple
GTFS datasets using a code concatenated to the ID. For example if you have transit
agency a and b, unique IDs could be 1002_a and 1002_b.

For the purposes of consistency with GTFS, the following files are proposed to be
required in Fast-Trips’ specification:

agency.txt Shall now be a required file in Fast-Trips both because Fast-Trips should be
able to accommodate multiple transit agencies, and because it is a required file in GTFS
and we want to be able to reuse GTFS tools as much as possible.

calendar.txt Shall now be a required file in Fast-Trips because it is a required file in
GTFS and we want to be able to reuse GTFS tools as much as possible.

The data standard in its entirety can be found in Appendix A.

Transit Service Provision
The following additional files are proposed to augment the GTFS representation transit
service provision:

routes_ft.txt: A new table that is an extension of routes.txt. This table will
include the following fields:

● route_id: Unique ID that links to route_id in routes.txt.
● proof_of_payment: Payment is/is not enforced via fare inspectors.
● fare_class: (Optional) It’s possible that an agency has different fares for

different service, e.g. Sound Transit bus and light rail, so this field will be used
determine unique fare amounts/rules for fare specific service. Examples
include: metro, community_transit, st_bus, st_light_rail, st_commuter_rail etc.

● mode: The purpose of this field is to enable both transit sub-mode skimming and
the assignment of various parameters on in vehicle time (i.e. making the
perceived in vehicle time for commuter rail less than the perceived in vehicle
time for a bus). While the network mode values are flexible and adaptable to
various agencies and situations, we have listed possible values to encourage
inter-agency consistency. The mode choice model specifies a set of network
modes that can be used for each mode choice mode based on a modal hierarchy,
defined in the Fast-Trips parameters files. Mode choice modes can either be
general (i.e. walk-transit, which allows the use of all transit so long as it is
accessed by walking) or specific (i.e. walk-heavy_rail, which might allow the use
of local bus so long as it is used to access heavy rail). Network mode definitions
should have sufficient detail to be able to encapsulate the mode-choice mode
definitions.

○ local_bus
○ premium_bus (e.g., Community Transit, Sound Transit, Golden Gate

Transit)
○ rapid_bus (e.g., Van Ness BRT)
○ light_rail (e.g., VTA Rail, Muni Metro, Link)
○ heavy_rail (e.g., BART)
○ commuter_rail (e.g., Sounder, Caltrain)
○ regional_rail (e.g., SMART, eBART)

○ inter_regional_rail (e.g., Amtrak, ACE, Capital Corridor)
○ high_speed_rail
○ street_car (i.e. F-line, SLU)
○ ferry
○ cable_car
○ open_shuttle (i.e. Caltrain Shuttles, CPMC Shuttles)
○ employer_shuttle (i.e. Microsoft, Google, and Facebook shuttles)

vehicles_ft.txt: A new table describes transit vehicles. This table will include the
following fields:

● vehicle_name: Unique identifier for vehicle name specified in trips_ft.txt
● vehicle_description: (Optional) A description of the vehicle type.
● seated_capacity: (Optional) If specified, will override capacity stated in

trips.txt
● standing_capacity: (Optional) Of specified, will override capacity stated in

trips.txt
● number_of_doors: (Optional) Required to be able to estimate dwell time by

number of doors.
● max_speed: (Optional) Placeholder for future use in conjunction with DTA.
● vehicle_length: (Optional) Placeholder for future use in conjunction with

DTA.
● vehicle_height: (Optional) Used in conjunction with platform height to

determine level boarding.
● propulsion_type: (Optional) A potential summary variable for analyzing

climate impacts.
● wheelchair_capacity: (Optional) Blank indicates that it is unknown and

treated as unlimited, zero indicates that wheelchairs cannot access this vehicle.
This value overrides the value in trips.txt.

● bicycle_capacity: (Optional) Blank indicates that it is unknown and treated
as unlimited unless trips.txt says that it is not bicycle accessible.

trips_ft.txt: A new table that indexes vehicles.txt to trips.txt on trip_id. This
table will include the following fields:

● trip_id : The unique trip ID
● vehicle_name: The unique vehicle name which corresponds to a valid vehicle

name in vehicles_ft.txt.

stops_ft.txt: A new table that is indexed to stops.txt on stop_id. This table will
include the following fields:

● stop_id: Unique ID that links to stop_id in stops.txt.
● shelter : (Optional) Valid entries include:

○ (blank) unknown
○ inside (e.g., bus tunnel, underground BART)

○ sheltered
○ none

● lighting: (Optional) A boolean field to indicate whether the stop has lighting.
● bike_parking: (Optional) Indicates the availability of various types of bike

parking. Valid entries include:
○ none
○ standard_outside
○ standard_inside
○ lockers
○ valet (e.g., 4th Street Caltrain Station)

● bike_share_station:(Optional) A boolean to indicate the presence of a bike
share station

● Seating:(Optional) A boolean to indicate the presence of seating at the station
or stop. Stop-level variables will overwrite station-level.

● platform_height: (Optional) Used with vehicle height to determine level
boarding

● level: (Optional) Indicates number of floors up or below street level the stop is
relative to the station, and the station relative to street level.

● off_board_payment:(Optional) A boolean to indicate if there are fare gates or
tagging stations before the platform.

stop_times_ft.txt: A new table that is an extension of stop_times.txt. These
variables are all dependent on both the route and stop, which is why they are here. To
use pay_at_station variable as an example: in Seattle, you can pay/tap your transit
pass for some routes at some bus stops (rapid ride), but not at all stops.

● trip_id: Contains an ID that identifies a trip. This field is used to index this
table to stop_times.txt using both trip_id and stop_id.

● stop_id: Contains an ID that identifies a stop. This field is used to index this
table to stop_times.txt using both trip_id and stop_id.

● front_board_only: (Optional) A boolean to indicate if all doors can be used for
boarding or not in order to calculate dwell times.

● real_time_data: (Optional) A boolean to indicate presence of real time data
displayed, where stop level overwrites station level.

● reliability: (Optional) Not yet defined.
● level_boarding: (Optional) A boolean to indicate if this trip/stop combo have

a level boarding or not. Overrides logic from platform heights.

Fare Specification
While current versions of Fast-Trips do not take into account fares, the monetary cost
of transit does influence route choice and should be incorporated. Fares as specified in
GTFS have most, but not all, of the flexibility needed to be able to represent the fare
systems in the Puget Sound and Bay area.

fare_rules_ft.txt: A new table that is an extension of fare_rules.txt and will allow
variation in fares across time periods in order to account for peak pricing.

● fare_id: Unique ID that links to fare_id in fare_rules.txt.
● fare_class: The name of the fare_class which links to fare_class in

routes_ft.txt.
● start_time: Enables fares that fluctuate by time of day. If no time of day is

specified, it is assumed that this is the base fare and that other time of days will
override it.

● end_time: Enables fares that fluctuate by time of day. If no time of day is
specified, it is assumed that this is the base fare and that other time of days will
override it.

fare_attributes_ft.txt: A new table that is a substitute for fare_attribute.txt. In
the existing GTFS specification, the one-to-one relationship between route_id and
fare_id in fare_rules.txt precludes the ability to represent fares that vary by time
of day for the same route, e.g. peak/off-peak. Our work around is to use fare_id,
start_time and end_time in fare_rules_ft.txt to return fare_class, which is then
used in fare_attributes_ft.txt to return the correct fare. The only difference
between fare_attributes_ft.txt and fare_attributes.txt is that fare_class
is used instead of fare_id.

● fare_class: Unique ID that links fare_class in fare_rules_ft.txt.
● All other fields are the same as fare_attributes.txt

fare_tranfer_rules.txt: A new table that describes the amount a passenger will pay
when transferring from one fare_class to another fare_class.

● from_fare_class: The name of the fare_class that is associated with the
from leg of the transfer.

● to_fare_class: The name of the fare_class that is associated with the to leg
of the transfer.

● reduced_rate: True Indicates that the full fare of the to leg of the transfer is
not charged and the transfer_cost should be used instead. False indicates that
the full fare of the to leg is paid.

● transfer_cost: The cost of the transfer.

The following examples will illustrate how we will model fares using the extended
network structure.

Example: Single leg, no transfer, flat-fare
The example below illustrates how the fare for a single leg transit trip using a service
that has flat fare system. First fare_rules.txt is queried on route_id, origin_zone
& destination_zone to return it’s fare_id. In this case, Origin and destination

zones have values of None, which represent cases where stops are never used in a
zonal fee structure. Fare_rules_ft is then queried on fare_id and the time of
departure (>= to start_time, <= end_time) to return fare_class.
Fare_attributes_ft.txt is then queried on fare_class, and the cost of the fare is
returned by the price field.

stops.txt

stop_id stop_name zone_id ...
1 14th/Mission -- ...

2 30th/Mission -- ...

routes_ft.txt

route_id mode fare_class proof_of_payment
MUN14 local_bus muni_local 1

MUN14R local_bus muni_local 1

fare_rules.txt

fare_id route_id contains_id
muni-allday muni_local

fare_rules_ft.txt

fare_id fare_class start_time end_time
muni-allday muni_local 000001 240000

fare_attributes_ft.txt

fare_class price currency_type transfers transfer_duration
muni_local 2.50 USD - 5400

Example: Two or more legs, transfer
To capture the cost of this scenario, the cost of each leg is calculated using the same
method proposed for a single leg trip. We then use the from fare_class and the to fare
class to get the reduced_fare and transfer_cost attributes from
transfer_rules.txt. transfer_cost is the amount of the second fare given that
reduced_fare, which indicates a reduced rate, is True. For example, if reduced_rate

is True, the fare for the second leg of the trip is the amount in tranfer_cost. If
reduced_rate is False, then the full fare of the second leg is paid. To indicate a free
transfer, reduced_rate is set to True and transfer_cost is set to 0.

Example: Multiple Transfers
A second transfer would work in a similar fashion, however, it is possible (unlikely ?)
that the fare would have to be calculated using the from fare_class for both the first
and second leg to determine which transfer_rule to use. For example- a rider uses
the same fare_class in the first and third leg of a three leg trip. This fare_class is
entitled to a free transfer (tranfer_rule = 0) when staying with the same fare_class
during a transfer (e.g. a metro bus to metro bus transfer). Assuming the transfer has
not expired (and this scenario is permitted), the rider is eligible for a free transfer
based on the fare_class associated with the first leg of the trip, even if there is a
transfer cost (transfer_rule <> 0) associated with the second and third leg.

Example: System-wide Fare, one transfer
The following two-leg (one transfer) trip demonstrates how a system-wide fare would
be calculated using Pierce Transit as an example. First, fare_rules.txt is queried on the
route_id, origin_zone and destination_zone of the first leg to return it’s
fare_id. In this case, Origin and destination have zones but are the same because
these stops need zones for Sound Transit, our regional express bus service.
Fare_rules_ft.txt is then queried on fare_id and the time of departure (>= to
start_time, <= end_time) to return fare_class. Fare_attributes_ft is then
queried on fare_class, and the cost of the fare is returned by the price field.

The next step is to determine the transfer rule for this particular transfer. We use the
route_id of the second leg to get the fare_id which, along with departure time, is
used to get fare_class from fare_rules_ft. The from_fare_class and the
to_fare_class are used to get reduced_rate and transfer_cost from
fare_transfer_rules.txt. In this case reduced_rate is True the and fare_cost is
0 indicating that there is no fee for the second leg of this trip.

1st leg:

routes_ft.txt

route_id mode fare_id proof_of_payment
PT01 local_bus Pierce 1

stops.txt
stop_id stop_name zone_id ...

1 Pacific Ave/166th St. Tacoma ...

2 Pacific Ave & 112th St. Seattle ...

fare_rules.txt
fare_id route_id origin_id destination_id
PierceLocal PT01 Pierce Pierce

fare_rules_ft.txt

fare_id fare_class start_time end_time
PierceLocal PierceAllDay 000001 235959

fare_attributes.txt
fare_class price currency_type payment_method transfers
PierceAllDay 2.00 USD 1 -

2nd leg:

routes_ft.txt

route_id mode proof_of_payment
PT53 local_bus 1

stops.txt
stop_id stop_name zone_id ...
3 Pacific Ave & 112th St. Pierce ...

4 SR 512 P&R Pierce ...

fare_rules.txt
fare_id route_id contains_id
PierceLocal PT04

fare_rules_ft.txt
fare_id fare_class start_time end_time

PierceLocal PierceAllDay 000001 235959

fare_attributes.txt
fare_class price currency_type payment_method transfers
PierceAllDay 2.00 USD 1 -

fare_transfer_rules.txt

from_fare_class to_fare_class is_flat_fee transfer_rule
PierceAllDay PierceAllDay False 0

Example: Inter-Agency Fare, zonal fee structure
The following illustrates how an inter-agency fare (one transfer, two different fare
classes) would be calculated. First, fare_rules.txt is queried on the route_id,
origin_zone and destination zone of the first leg to return it’s fare_id.
Fare_rules_ft.txt is then queried on fare_id and the time of departure (>= to
start_time, <= end_time) to return fare_class. Fare_attributes_ft.txt is then
queried on fare_class, and the cost of the fare is returned by the price field.

The next step is determine the transfer rule for this particular transfer. We use the
route_id of the second leg to get the fare_id which can then be used to get
fare_class. We then get the rule that applies to this transfer, which is returned by
querying fare_transfer_rules.txt on from_fare_class and to_fare_class. In
this case, the field reduced_rate in the returned record is False, indicating the full
fare of the second leg applies. The full fare of the second leg (which is a peak fare) is
returned using the same method as the first leg. If, however, reduced_rate was True,
there would be no need to determine the standard fare of the second leg; instead the
value in the tranfer_cost field would be used.

1st leg:
stops.txt
stop_id stop_name zone_id ...
1 TACOMA_DOM

E

Tacoma ...

2 4th Ave &

Cherry

Seattle ...

fare_rules.txt

fare_id origin_id contains
ST_EXPRESS_2

Z

Tacoma 0

fare_rules_ft.txt
fare_id fare_class start_time end_time
ST_EXPRESS ST_EXPRESS_2Z 000001 235959

fare_attributes_ft.txt

fare_class price currency_type payment_method transfers
ST_EXPRESS_2Z 3.40 USD 1 2

2nd leg:
stops.txt

stop_id stop_name zone_id ...
3 James St. & 3rd Ave. Seattle ...

4 E Jefferson St & 17th Ave Seattle ...

fare_rules.txt

fare_id origin_id destination_id
Metro_1Z Seattle Seattle

fare_rules_ft.txt

fare_id fare_class start_time end_time
Metro_1Z METRO_1Z_P 060000 085959

fare_attributes_ft.txt

fare_clas
s

pric
e currency_type payment_method transfers

Metro_1Z_P 2.75 USD 1 -

fare_transfer_rules.txt

from_fare_clas
s

to_fare_clas
s is_flat_fee transfer_rule

ST_EXPRESS_2Z Metro_1Z_P False 1

Example: Zone-Based Fares
Commuter rail frequently calculates fares based on the number of zones you traverse.
This can be specified as follows.
stops.txt

stop_id stop_name zone_id ...
1 PIONEER_SQ SEATTLE ...

2 EVERETT EVERETT ...

fare_rules.txt

fare_id origin_id destination_id
SOUNDER_2Z SEATTLE EVERETT

fare_rules_ft.txt
fare_id fare_class start_time end_time
SOUNDER_2Z SOUNDER_2Z_ALL_DAY 000000 235959

fare_attributes_ft.txt

fare_class pric
e currency_type payment_method transfers

SOUNDER_2Z_ALL_DAY 2.75 USD 1 -

Example: OD-Based Fares
Origin-destination based fares are common on heavy rail systems, such as BART. They
are a special case of zone-based fares, where every station has its own zone, and could
be specified as follows.

stops.txt

stop_id stop_name zone_id ...
1 EMBARCADERO B_EMB ...

2 FREMONT B_FRE ...

fare_rules.txt

fare_id origin_id destination_id
B_EMB_FRE B_EMB B_FRE

fare_rules_ft.txt
fare_id fare_class start_time end_time
B_EMB_FRE B_EMB_FRE_ALL_DAY 000000 235959

fare_attributes_ft.txt

fare_class price currency_typ
e

payment_metho
d transfers

B_EMB_FRE_ALL_DAY 2.75 USD 1 -

Transit Access and Transfer Specification
Per the scope of this project, each agency will keep its current demand resolution and
access/egress link generation processes. It is expected that each agency will be able to
generate appropriate access and egress links from TAZ centroids to transit stops.

walk_access.txt is proposed as a slight reformulation of the current Fast-Trips
specification of ft_input_access_links.dat with additional optional fields in
addition to distance to take advantage of potential variables in utility equations. We
also propose the elimination of the time variable to allow for walking speed to vary
based on the market segment. Additional optional variables include:

● elevation_gain: (Optional) the elevation in feet that one has to walk uphill to
traverse this link.

● population_density: (Optional) could be measured for the area within ¼
mile, or other.

● employment_density: (Optional) could be measured for the area within ¼
mile, or other.

● retail_density: (Optional) could be measured for the area within ¼ mile, or
other.

● auto_capacity:(Optional) could be measured for the actual roadway, an area
within ¼ mile, or other.

● indirectness: (Optional) the ratio of the manhattan distance to crow-fly
distance.

transfers.txt will also include entries for links between PNR and KNR lots and
stations/stops.

transfers_ft.txt contains necessary and optional information about transfer links
that does not fit within the GTFS specification. We propose the elimination of the time
variable (compared to the original Fast-Trips specification) to allow for walking speed
to vary based on the market segment. Additional optional variables include:

● distance:represented here because it is not in GTFS format
● elevation_gain: (Optional) the elevation in feet that one has to walk uphill to

traverse this link.
● population_density: (Optional) could be measured for the area within ¼

mile, or other.
● employment_density: (Optional) could be measured for the area within ¼

mile, or other.
● retail_density: (Optional) could be measured for the area within ¼ mile, or

other.
● auto_capacity:(Optional) could be measured for the actual roadway, an area

within ¼ mile, or other.
● indirectness: (Optional) the ratio of the manhattan distance to crow-fly

distance.
● from_route_id: The route_id of the connection passengers are alighting.
● to_route_id: The route_id of the connection that passengers are boarding.
● schedule_precedence: The route whose schedule cannot be adjusted. Valid

values are either from or to.

The variety in approaches among agencies for park and rides (PNR) necessitates
flexibility within Fast-Trips for how they are defined. One one end of the spectrum,
park and ride choice is done completely within the network model (e.g., Travel Model
One), which allows for a joint choice of transit path and park and ride lot, but must
wait for an entire global iteration to determine if park and ride lots are full. On the
other end, it is done completely within the ABM in order to have an accounting of the
capacities and use person-based variables in the park and ride choice (e.g., DaySim),
but artificially constrains the transit path-finder to a single park and ride lot when a
more optimal route may exist. If enough iterations between the ABM and network
model are completed, this would be fine, but it may provide more noise than is desired
on an iteration-to-iteration basis in order to close the swings between iterations. A
hybrid approach is to specify a handful of likely PNR lots in the demand model to feed
into the network model (e.g., SF-CHAMP). We propose a solution that is flexible
enough to accommodate the spectrum of approaches adopted by each of the three
agencies

drive_access.txt has one entry for each park and ride or kiss and ride lot that can be
accessed from each zone. For each trip, the demand file will be referenced to further

constrain the park and ride entries that are available. Additional optional variables
include:

● taz (integer)
● lot_id (integer) , which can be a special PNR TAZ if they exist, or a KNR node.
● direction (string) to determine if it is an access or egress link, with possible

values of:
○ access
○ egress

● dist (float, miles)
● travel_time (float, minutes)
● cost (integer, cents) represents tolls and out of pocket costs for the access link

(separate from parking cost, which is specified below)
● start_time (HHMMSS from midnight) This is so we can model attributes that

fluctuate by time of day. If blank no time of day is specified, it is assumed that
this is the base condition other time of days will override it.

● end_time (HHMMSS from midnight) This is so we can model attributes that
fluctuate by time of day. If blank and no time of day is specified, it is assumed
that this is the base condition other time of days will override it.

pnr.txt represents the characteristics of the park and ride lot itself and is connected to
a stop or station by a transfer link in transfers.txt.

● lot_id: Unique identifier for park and ride lot
● lot_lat: Latitude of lot in WGS 84
● lot_long: Longitude of lot in WGS 84
● name: (Optional)
● capacity: (Optional) If not specified, assumed to be infinite
● overflow_capacity: (Optional) If not specified, assumed to be zero. This is to

represent “hide and ride” or unofficial parking availability in surrounding area.
● hourly_cost (integer, cents), optional - hourly cost
● max_cost (integer, cents), optional - maximum daily cost
● type (string), with possible values of:

○ surface
○ underground
○ structure

knr.txt represents the characteristics of the kiss and ride lot itself and is connected to a
stop or station by a transfer link in transfers.txt.

● lot_id (integer), required
● lot_lat (float), required, latitude of stop or station in WGS 84
● lot_long (float), required longitude of stop or station in WGS 84
● name (string), optional

Appendix A - Transit Network Data Standard
This Appendix describes the proposed network specification for Fast-Trips in detail,
comparing it to the existing GTFS specification where applicable. Note that in all tables
below, the “requirements” column is encoded as follows:

● + : Required
● O: Optional
● NA: Not Applicable

File Format
Comma-delimited text files where the first line of each file contains the field names,
which are case-sensitive. Field values may not contain tabs, carriage returns or new
lines.

Required Files
In the table below, green text indicates additions or changes from the existing
specification.

File Filename GTFS FastTrips

Walk access Links walk_access.txt

NA Required

Transfer Links transfers.txt Optional Required

Transfer Links
Additional Info

transfers_ft.txt NA Implementation
dependent

Drive Access Links drive_access.txt NA Implementation
dependent

Park and Ride Lots pnr.txt NA Implementation
dependent

Kiss and Ride Dropoffs knr.txt NA Implementation
dependent

Trips trips.txt Required Required

Trips Additional Info trips_ft.txt NA Required

Routes routes.txt Required Required

Routes Additional Info routes_ft.txt NA Required

Stops stops.txt Required Required

Stops Additional Info stops_ft.txt NA Required

Stop Times stop_times.txt Required Required

Stop Times Additional
Info

stop_times_ft.txt NA Required

Vehicles vehicles_ft.txt NA Required

Shapes shapes.txt Optional Optional

Agency agency.txt Required Required

Calendar calendar.txt Required Required

Calendar Dates
(exceptions)

calendar_dates.txt Optional NA

Fare Attributes fare_attributes.txt Optional Implementation
dependent

Fare Rules fare_rules.txt Optional Implementation
dependent

Fare Rules Additional
Info

 fare_rules_ft.txt NA Implementation
dependent

Fare Transfer Rules fare_transfer_rules.txt NA Implementation
dependent

Frequencies frequencies.txt Optional NA

Feed publication info feed_info.txt Optional NA

Transit Service Provision
All files below are required unless specified otherwise.

trips.txt
Contains a record for every transit vehicle trip (i.e. the Muni 14 Local Outbound that
leaves at 8:02 AM)

Field Name Required Details

trip_id

GTFS: +
FT: +

ID that uniquely identifies a vehicle trip

route_id

GTFS: +
FT: +

ID that uniquely identifies a route

service_id

GTFS: +
FT: O

ID that uniquely identifies set of dates when service
is available from calendar or calendar dates files.

trip_headsign

GTFS: O
FT: O

Text that appears on the vehicle headsign to identify
destination to passengers.

trip_short_name

GTFS: O
FT: O

Text that appears in schedules and sign boards.

block_id

GTFS: O
FT: O

Two or more sequential trips made using same
vehicle where passenger can transfer by staying on
same vehicle. block_id must be referenced by two
or more trips in trips.txt.

shape_id

GTFS: O
FT: O

Defines shape for the trip from shapes.txt file.

wheelchair_access
ible

GTFS: O
FT: O

0 - no accessibility info
1 - vehicle on this trip can accommodate at least
one rider in a wheelchair
2 - no riders in wheelchairs can be accommodated
on this trip

bikes_allowed

GTFS: O
FT: O

0 - no bike accessibility info
1 - vehicle on this trip can accommodate at least
one bicycle
2 - no bicycles can be accommodated on this trip

direction_id

GTFS: O
FT: O

ID that contains a binary value that indicates the
direction of the trip:
0 - travel in one direction
1 - travel in opposite direction

trips_ft.txt
Contains a record for every transit vehicle trip (i.e. the Muni 14 Local Outbound that
leaves at 8:02 AM)

Field Name Required Details

trip_id

+ ID that uniquely identifies a vehicle trip

vehicle_name + Name of vehicle type, which is to match a
description in vehicles.txt

routes.txt
Contains a record for every transit route (i.e. the Muni - 14 Local)

Field Name Required Details

route_id

GTFS: +
FT: +

ID that uniquely identifies a route

agency_id

GTFS: O
FT: O

ID that identifies the agency as specified in agency.txt

route_short_name

GTFS: +
FT: +

Short name of the route

route_long_name

GTFS: +
FT: +

Full name of the route

route_desc

GTFS: O
FT: O

Description of route.

route_type

GTFS: +
FT: +

Service type:
0 - Tram, streetcar, light rail
1 - Subway, metro
2 - Rail
3 - Bus
4 - Ferry
5 - Cable car
6 - Gondola
7 - Funicular

route_url

GTFS: O
FT: O

Webpage for that route

route_color

GTFS: O
FT: O

Display color for route in six-digit hexadecimal

route_text_color

GTFS: O
FT: O

Color of text to be drawn on top of route color,
specified in six-digit hexadecimal

routes_ft.txt
Field Name Required Details

route_id + The route_id field is an ID that uniquely identifies a route. This
field is used to index this table to routes.txt.

mode + The mode field is used to specify the network mode of the

route. Valid entries include :

● local_bus

● premium_bus (e.g., Community Transit, Sound

Transit, Golden Gate Transit)

● rapid_bus (e.g., Van Ness BRT)

● light_rail (e.g., VTA Rail, Muni Metro, Link)

● heavy_rail (e.g., BART)

● commuter_rail (e.g., Sounder, Caltrain)

● regional_rail (e.g., SMART, eBART)

● inter_regional_rail (e.g., Amtrak, ACE, Capital

Corridor)

● high_speed_rail

● street_car (i.e. F-line, SLU)

● ferry

● cable_car

● open_shuttle (i.e. Caltrain Shuttles, CPMC Shuttles)

● employer_shuttle (i.e. Microsoft, Google, and

Facebook shuttles)

fare_clas
s

O String. The fare_entity field contains a string that uniquely
defines an agency and service type that has a uniform fare
structure since multiple fare structures could exist within a
single agency. Examples for Sound Transit could be
st_light_rail, st_commuter_rail, st_bus.

proof_of_
payment

+ Boolean. The proof_of_payment field contains a boolean
value indicating if the route has fare enforcement through
random inspection (true) or if the driver oversees payment
(false).

stops.txt
Contains a record for every transit stop or station (i.e. Embarcadero Station)

Field Name Required Details

stop_id

GTFS: +
FT: +

ID that uniquely identifies a stop or station

stop_code

GTFS: O
FT: O

Short text or a number that identifies the stop for
passengers (i.e. EMB)

stop_name

GTFS: +
FT: +

Name of a stop or station

stop_desc

GTFS: O
FT: O

Description of a stop or station

stop_lat

GTFS: +
FT: +

Latitude of stop or station in WGS 84

stop_lon

GTFS: +
FT: +

Longitude of stop or station in WGS 84

zone_id

GTFS: O
FT: O

Defines a fare zone for the stop ID. Required if you want
to provide fare information in fare_rules.txt that uses
zones.

location_type

GTFS: O
FT: O

Identifies whether this stop is a stop or station. If
nothing is specified or is blank, it is assumed it is a stop.
Stations can have different properties from stops.
0 or blank - stop
1 - station (contains one or more stops)

parent_station

GTFS: O
FT: O

For stops inside stations, identifies station associated
with the stop. Stops.txt must also contain a row where
this stop id is assigned a location type 1.

stop_timezone

GTFS: O
FT: O

Contains timezone where stop or station is located. If
omitted, stop assumed to be located in timezone in
agency.txt.

wheelchair_boarding

GTFS: O
FT: O

Identifies whether wheelchair boardings are possible
from the specified stop or station.
0 - no information
1 - some vehicles can be boarded by wheelchair
2 - wheelchair boarding not possible

If a stop is part of a station:
0 - will inherit from parent station, if specified.

1 - there is an accessible path from outisde station to
stop
2 - no accessible path to specific stop

stops_ft.txt
Contains a record for every transit stop or station (i.e. Embarcadero Station)

Field Name Required Details

stop_id + ID that uniquely identifies a station. This field is used to
index this table to stops.txt.

shelter O String. Contains a description of the the shelter facility
at the station. Valid entries include:

● blank / unknown
● inside (i.e. underground)
● sheltered
● none

lighting O Boolean. Indicates the presence or absence of lighting.

bike_ parking O Describes the bike parking facilities at the station. Valid
entries include:

● none
● standard_outside
● standard_inside
● lockers
● valet (i.e. bike station)

bike_share_stat
ion

O Boolean. Indicates the presence of bike share location.

seating O Boolean. Indicates the presence of seating at the

station. Stop-level overrides station-level.

platform_height O Float, inches. Used with vehicle height to determine

level boarding.

level O Integer, floors from street level. Indicates how far up or

below street level the stop is relative to the station and

the station relative to the street level.

off_board_payme
nt

O Boolean. INdicates if there are fare gates or tagging

stations before the platform. Can be overridden by

stop_times _ft value for specific service.

stop_times.txt
Contains a record for every scheduled stop within a trip and route (i.e. the time when
the Muni 14 Local Outbound that left at 8:02 gets to 24th St. and Mission St)

Field Name Required Details

trip_id

GTFS: +
FT: +

ID that uniquely identifies trip

arrival_t
ime

GTFS: +
FT: +

Arrival time at a specific stop for a specific trip on a route in
HHMMSS format measured from midnight. For trips that span
multiple dates, the time should be entered as a value greater
than 2400000

departure
_time

GTFS: O
FT: +

Departure time at a specific stop for a specific trip on a route in
HHMMSS format measured from midnight. For trips that span
multiple dates, the time should be entered as a value greater
than 2400000

stop_id

GTFS: +
FT: +

ID that uniquely identifies a stop

stop_sequ
ence

GTFS: +
FT: +

Sequence number on a specific stop within a trip. The first stop
sequence is 1 and subsequent stops in the trip are sequentially
numbered.

stop_head
sign

GTFS: O
FT: O

Text that appears on sign that identifies the trips destination to
passengers. use this field to override default headsign when it
changes at stops.

pickup_ty
pe

GTFS: O
FT: O

0/default - regular pickup
1 - no pickup available
2 - must phone agency
3 - must coordinate with driver

drop_off_
type

GTFS: O
FT: O

0/default - regular drop off
1 - no drop off available
2 - must phone agency
3 - must coordinate with driver

shape_dis
t_travele
d

GTFS: O
FT: O

Positions a stop as a distance from the first shape point in units
that are used in this field in shapes.txt

timepoint

GTFS: O
FT: O

Indicates if specified arrival and departure times for a stop are
strictly adhered to by the transit vehicle or if they are
approximate and/or interpolated.

empty - times considered exact
0 - times considered approximate
1 - times considered exact

stop_times_ft.txt
Contains a record for every scheduled stop within a trip and route (i.e. the time when
the Muni 14 Local Outbound that left at 8:02 gets to 24th St. and Mission St)

Field Name Required Details

trip_id + ID that identifies a trip. This field is used to index this table to
stop_times.txt using both trip_id and stop_id.

stop_id + ID that identifies a stop. This field is used to index this table to

stop_times.txt using both trip_id and stop_id.

pay_at_
station

O Boolean. Indicates if the passenger can pay at the stop.
Boolean.

real_time_d
ata

O Boolean. Indicates presences of real time data displayed while
waiting. Stop level overrides station level.

front_board
_only

O Boolean. Indicates the boarding can only be made through the
front doors.

reliability O Not yet defined.

level_
boarding

O Boolean. The level_boarding field indicates if the platform and

the bus are level. Overrides logic from platform height.

shapes.txt - Optional
Contains a record for shape points in a single shape that collectively describes the path
transit vehicles take on their trips.

Field Name Required Details

shape_id

GTFS: +
FT: +

ID that uniquely identifies a shape

shape_pt_lat

GTFS: +
FT: +

Latitude of a shape point (WGS 84)

shape_pt_lon
g

GTFS: +
FT: +

Longitude of a shape point (WGS 84)

shape_pt_seq
uence

GTFS: +
FT: +

Associates the latitude and longitude of a shape point
sequence order along a shape

shape_dist_t
raveled

GTFS: O
FT: O

Distance from the first shape point as a real distance in
feet

vehicles.txt
Contains a record for each vehicle type
Field Name Required Details

vehicle_
name

+ String. Uniquely identifies a vehicle type.

vehicle_
descripti
on

O String. Description of the vehicle. For example, ‘metro_articulated’.

seated_
capacity

O Integer. Total seated capacity per vehicle. If specified, this will
override capacity from trip file.

standing_
capacity

O Integer. Number of standing riders at capacity. If specified, this will
override capacity from trip file.

number_
of_doors

O Integer. Number of doors.

max_
speed

O Float. Maximum speed of the vehicle in mph.

vehicle_
length

O Float. Length of the vehicle in feet.

platform_
height

O

Float. Height of the platform in inches.

propulsio
n_ type

O

String. Name of the propulsion type. Possible values include:
● diesel,
● bio-diesel,
● CNG,
● diesel-hybrid,
● electric.

wheelchai
r_capacit
y

O

Integer, overrides value in trip file. Blank indicates that it is
unknown and is treated as infinite. Zero indicates that wheelchairs
cannot access this vehicle.

bicycle_c
apacity

O

Integer. Blank indicates that it is unknown and is treated as infinite
unless the trip file says that it is not bicycle accessible.

Fare Definition

fare_attributes.txt - Implementation Specific Requirements

Field Name Required Details

fare_id GTFS: +
FT: +

Contains an ID that uniquely identifies the fare class. The
fare_id is dataset unique.

price GTFS: +
FT: +

Fare price in the unit specified by currency_type

currency_typ
e

GTFS: +
FT: +

Defines the currency used to pay the fare in ISO 4217
alphabetical currency codes

payment_meth
od

GTFS: +
FT: +

When the fare must be paid:
0 - on board
1 - before boarding

transfers GTFS: +
FT: +

Number of transfers permitted on this fare:
0 - none
1 - one
2 - two
(empty) - unlimited

transfer_dur
ation

GTFS: O
FT: O

Length of time in seconds before transfer expires. Omit or
leave empty if they do not.

fare_attributes_ft.txt - Implementation Specific Requirements
The one-to-one relationship between route_id and fare_id in fare_rules.txt precludes
the ability to represent fares that vary by time of day for the same route, e.g.
peak/off-peak. Our work around is to use fare_id, start_time and end_time in
fare_rules_ft.txt to return fare_class, which is then used in fare_attributes_ft.txt to
return the correct fare.

Field Name Required Details

fare_class GTFS: +
FT: +

Contains an ID that uniquely identifies the fare class. The
fare_class is dataset unique.

price GTFS: +
FT: +

Fare price in the unit specified by currency_type

currency_typ
e

GTFS: +
FT: +

Defines the currency used to pay the fare in ISO 4217
alphabetical currency codes

payment_meth
od

GTFS: + When the fare must be paid:

http://en.wikipedia.org/wiki/ISO_4217.
http://en.wikipedia.org/wiki/ISO_4217.
http://en.wikipedia.org/wiki/ISO_4217.
http://en.wikipedia.org/wiki/ISO_4217.

FT: + 0 - on board
1 - before boarding

transfers GTFS: +
FT: +

Number of transfers permitted on this fare:
0 - none
1 - one
2 - two
(empty) - unlimited

transfer_dur
ation

GTFS: O
FT: O

Length of time in seconds before transfer expires. Omit or
leave empty if they do not.

fare_rules.txt - Implementation Specific Requirements
Specifies how fares in the fare attributes file apply to an itinerary by O/D station,
zones, or route.

Field Name Required Details

fare_id + Unique identifier to fare class in fare attributes file

route_id O Associates a fare ID with a route ID from the routes file. If
multiple route have the same attributes, create a row for each
route.

origin_id O Origin fare zone ID, referenced from the stops file. If several
origin IDs have the same fare attributes, create a row for each
origin ID.

desitnation
_id

O Destination fare zone ID, referenced from the stops file. If
several faredestination IDs have the same fare attributes, create
a row for each destination ID.

contains_id O Associates a fare iD with a zone ID from the stops file and is
associated with itineraries that pass through the contains_id
zone.

fare_rules_ft.txt - Implementation Specific Requirements
Field Name Required Details

fare_id + An ID that links to fare_id in fare_rules.txt.

fare_class + Contains the name of the fare_class that links to the same
attribute in routes_ext.txt.

start_time + (HHMMSS from midnight) This is so we can model fares that

fluctuate by time of day. If no time of day is specified, it is assumed

that this is the base fare and that other time of days will override it.

end_time + (HHMMSS from midnight) This is so we can model fares that

fluctuate by time of day. If no time of day is specified, it is assumed

that this is the base fare and that other time of days will override it.

fare_transfer_rules.txt - Implementation Specific Requirements

Field Name Required Details

from_fare_class + An ID that identifies the fare_class that the passenger is
coming from.

to_fare_class

+ An ID that identifies the fare_class that the passenger is
going to.

is_flat_fee + A flag that indicates if a flat fare is paid or the fare is a
percentage of the full fare for that leg. If True, a flat fee
is expected in the tranfer_rule field, e.g. 1.50. Otherwise
the value in tranfer_rule should range from 0-1.

transfer_ rule + If is_flat_fee is true, value should be a monetary
amount, e.g 1.50. Otherwise, this field contains the
amount, from 0-1, that will be multiplied to the fare of
the transfer leg to return the amount of the transfer.

Access Files

walk_access.txt - required by Fast-Trips, not a GTFS format
Contains a record for each feasible stop <--> zone pair

Field Name Required Details

taz + Zone ID

stop_id + Stop ID

dist + Walking distance in miles between TAZ and stop

elevation_gain O integer, feet. The elevation walked along this link.

population_den
sity

O float, employees per square mile per mile. Can be
measured for the area within ¼ mile, or other.

retail_density O float, employees per square mile per mile. Can be
measured for the area within ¼ mile, or other.

auto_capacity O float, vehicles per hour per mile. Can be measured for the
actual roadway, an area within ¼ mile, or other.

indirectness O float, ratio. Measured as the ratio of the manhattan

distance to crow-fly distance.

transfers.txt required by Fast-Trips, Optional for GTFS
Transfers are links traversed on foot. They are created for each stop to all other stops
that are considered accessible during a transfer from an individual stop as well as
between stops accessible from PNR and KNR lots.

Contains a record for each feasible stop <--> stop pair in addition to PNR <-->stops and
KNR ←> stops.

Field Name Required Details

from_stop_id

GTFS: +
FT: +

From stop ID

to_stop_id

GTFS: +
FT: +

To stop ID

transfer_type

GTFS: +
FT: +

Specifies the type of connection:
0 / Empty - a recommended transfer point
1 - timed transfer between two routes
2 - requires a minimum amount of time, specified
by min_transfer_time
3 - transfers not possible between routes

min_transfer_ti
me

GTFS: +
FT: +

When a connection between routes requires an
amount of time between arrival and departure
(transfer_type=2), this field defines the amount of
time that must be available for a typical rider - in
seconds.

transfers_ft.txt - Implementation Specific Requirements

Field Name Required Details

from_stop_id

+ From stop ID

to_stop_id

 + To stop ID

dist

 + float, miles

from_route_id + From route ID

to_route_id + To route ID

schedule_preced
ence

+ Either from or to

elevation_gain O integer, feet. The elevation walked along this link.

population_dens
ity

O float, employees per square mile per mile. Can be
measured for the area within ¼ mile, or other.

retail_density O float, employees per square mile per mile. Can be
measured for the area within ¼ mile, or other.

auto_capacity O float, vehicles per hour per mile. Can be measured
for the actual roadway, an area within ¼ mile, or
other.

indirectness O float, ratio. Measured as the ratio of the

manhattan distance to crow-fly distance.

drive_access.txt - Implementation Specific Requirements
Field Name Required Details

taz

+ TAZ ID

lot_id

 + Lot ID

direction + String. Can have values of:
● access
● egress

dist

 + float, miles.

cost + integer, cents.

travel_time + float, minutes.

start_time + HHMMSS from midnight. If blank, it is assumed

that this is the base condition and other time of

days will override it.

end_time + HHMMSS from midnight. If blank, it is assumed
that this is the base condition and other time of
days will override it.

pnr.txt - Implementation Specific Requirements

Field Name Required Details

lot_id

+ Lot ID

lot_lat

 + Float. Lot location latitude.

lot_long + Float. Lot location longitude

name

 O String.

capacity O Integer. Represents number of parking spaces at
park and ride. If not specified, assumed to be
infinite

overflow_capacity O Integer. Represents “hide and ride” or unofficial
parking availability in surrounding area. If not
specified, assumed to be zero.

hourly_cost O Integer, cents. Hourly cost to park.

max_cost O Integer, cents. Maximum daily cost to park.

type O String, with possible values of:

● surface

● underground

● structure

knr.txt - Implementation Specific Requirements
Required by Fast-Trips if have kiss and ride access
Represents the characteristics of the kiss and ride lot itself and is connected to a stop or
station by a transfer link in transfers.txt.

Field Name Required Details

lot_id

+ Lot ID

lot_lat

 + Float. Lot location latitude.

lot_long + Float. Lot location longitude

name

 O String.

Other Required Files
The following files are required because they are required in GTFS and we do not want
to break any GTFS reader’s expectations.

agency.txt

Field Name Required Details

agency_id

O ID that uniquely identifies the transit agency.

agency_name

 + Contains full name of transit agency.

agency_url + String. Fully qualified URL of agency.

agency_timezone

+ String. List of valid values:
httpp//en.wikipedia.org/wiki/List_of_tz_database_
time_zones

agency_lang O String. Two-letter, ISO 639-1 code for primary
language used by agency. Case-insensitive (both
EN and en are accepted)

agency_phone O String. Phone number for agency.

agency_fare_url O String. URL of where fares are defined.

calendar.txt

Field Name Required Details

service_id

O ID that uniquely identifies the transit agency.

monday

 + 0 or 1. Binary value on whether this service pattern
is available on Mondays.

tuesday + 0 or 1. Binary value on whether this service pattern
is available on Tuesdays.

wednesday

+ 0 or 1. Binary value on whether this service pattern
is available on Wednesdays.

https://developers.google.com/transit/gtfs/reference#agency_fields
https://developers.google.com/transit/gtfs/reference#agency_fields
https://developers.google.com/transit/gtfs/reference#calendar_fields

thursday + 0 or 1. Binary value on whether this service pattern
is available on Thursdays.

friday + 0 or 1. Binary value on whether this service pattern
is available on Fridays.

saturday + 0 or 1. Binary value on whether this service pattern
is available on Saturdays.

sunday + 0 or 1. Binary value on whether this service pattern
is available on Sundays.

start_date + String, YYYYMMDD. Start date for service.

end_date + String, YYYMMDD. End date for service.

