
Technical Memo

To: SHRP2 - C10 Tri-Agency Project Implementation Files

From: Billy Charlton & Lisa Zorn

Date: July 15, 2015

Subject: Fast-Trips Development Plan - Working Draft

Introduction
The purpose of this document is to propose a list of development priorities for the
Python version of Fast-Trips, now that we know more about it.

Decisions need to be made around the order of priorities with the overall objective of
front-loading performance and usability features as much as possible while still
meeting the schedule for the feature development needs of other tasks.

Considerations include when each feature is needed for other tasks and the overall
usability of this version of Fast-Trips. Related tasks include Task 4, which will use it for
choice set generation in September, and Task 8, which will use it for integration,
beginning in the fall.

Background
The original workplan highlighted the following items for Fast-Trips development in
rough order:

1. Translation to Python
2. Read new input formats for networks and demand
3. Control capabilities to turn on/off various features
4. Crowding implementation
5. Multi-class
6. Skimming / choice set generation
7. Intermodal travel capabilities (similar to what was used at SACOG

implementation)
8. Performance

The intermodal travel capabilities feature is desired to be able to represent the
dynamic filling of park and ride lots and the skimming / choice set generation
capabilities are needed in order to estimate the transit route choice model (Task 4) and
to integrate it into SF-CHAMP and SoundCast (Task 8).

At the time of writing the workplan we noted that “we knew we didn’t know all that
there is to know” and that we would revisit this priority list following the translation
into Python when Lisa would have had the opportunity to read through all the code.

Lisa completed the straight translation of the Fast-TrIPs C++ code to Python in May. In
the process, she fixed one bug present in the C++ code. She was able to verify the
translation by running sets of 200 people through the network on both the Python and
C++ versions of the code. In the process, she also noted that the crowding capabilities
and multi-class assignment capabilities were already essentially “there.”

While those are two steps forward, Lisa also confirmed what we had suspected to be
the case with a direct Python translation: it is slow. The Python version is orders of
magnitude slower which would jeopardize its overall usefulness. This is not
unexpected and there are numerous reasons for this including that Python works
quickest when things are vectorized rather than when things run in for-loops (as they
do in Fast-Trips). Fast-Trips was written for C++, not Python, so we are not surprised
that we will need to change some of the internal structure to get it to work well in
Python.

Proposed Fast-Trips Development Plan

Because the performance was so slow, and because a speed-up may require changing
some of the internal structure, we propose to elevate “performance” to the top of our
list before tackling other features. The proposed new development plan is as follows
in order of attack:

1. Critical Performance (sub six-hour run time for entire Bay Area, all time

periods)
2. Read new input formats for networks and demand
3. Control capabilities to turn on/off various features and adjust parameters
4. Skimming / choice set generation
5. Intermodal travel capabilities (AKA park and ride) similar to what was used at

SACOG implementation
6. Nice to have performance

Details on Performance Attack
Performance is the foremost issue right now. Current run times are expected to be
1,666 hours per crowding iteration, so a 300x+ speedup is needed to meet the current
performance target of six hours. The team decided to undertake the following items in
order to better understand the performance issue:

● Investigate what is taking so long with SnakeViz
● Explore using Pandas for simulation
● Explore what else can be vectorized into NumPy / Pandas arrays
● Explore how far away Fast-Trips is from a traditional graph-search and consider

employing something that does the graph search work in C such as:
○ Pandana
○ Graph-Tool

● Consider a Map-Reduce approach
● Consider compiling part of it in Cython or as a C extension if necessary

To date, several of these items have been undertaken.

● Using Pandas to Simulate resulted in a 2X speed improvement.
● Using Cython for several methods resulted in another 2X speed improvement;

however, this has much more potential. Billy will be spearheading this. It is
possible that in the end we will end up with a very fast c-based codebase with a
Python wrapper.

● Investigation into Pandana revealed that it is unlikely that this tool would help.
● Investigations with SnakeViz revealed that approximately ⅓ of the time was

spent label-setting and ⅔ of time was spent in path-finding. The entire process
should be parallelizable because each passenger path can be found in parallel
(this process includes both label-setting and path-finding).

https://jiffyclub.github.io/snakeviz/
http://pandas.pydata.org/
http://quantess.net/2013/09/30/vectorization-magic-for-your-computations/
https://github.com/synthicity/pandana
https://graph-tool.skewed.de/
http://stackoverflow.com/questions/16093044/is-there-a-simple-python-map-reduce-framework-that-uses-the-regular-filesystem
http://cython.org/
https://github.com/MetropolitanTransportationCommission/fast-trips/tree/assign_cython
https://github.com/MetropolitanTransportationCommission/fast-trips/tree/assign_cython

